

Jay Pearlman, Francoise Pearlman, IEEE Eric Delory, PLOCAN, Joanquin del Rio, UPC "The Ocean of Tomorrow 2013"

a cross-thematic program focused on fostering research and innovation in marine technologies.

Understanding the "Blue Planet" Ocean Observation Challenges

- Pervasive in Space and Time
- Affordable
- Quantifiable
- Interoperable
- Fit for purpose

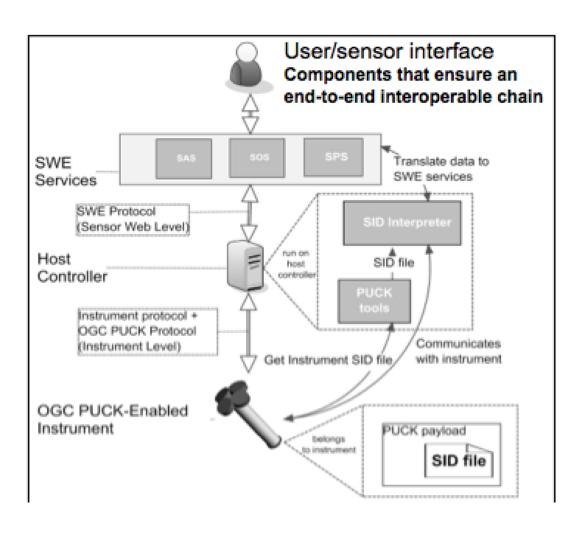
Oceans surface is 3.6x10⁸ km²

New multifunctional sensors for fixed and mobile observatories

- 4 year FP7 Project, 21 partners
- Optics and acoustics sensors for several application domains
- 8 web-enabled "plug'n play" sensor systems being developed and demonstrated

NeXOS Objectives

- Lower capital and operating expenses for sensor systems
- Multifunctional sensor packages
- Standard web interfaces for multiple platforms
- Extend the deployment duration of sensors



NeXOS in a nutshell

Sensor Tec	hnology	Sensor type					
Optical		O1 Matrix-fluorescence					
		O2 Hyperspectral					
		O3 Carbon					
Passive Ac	oustics	A1 Preprocessed					
		A2 Real-time					
RECOPESO	CA/EAF	EAF/ Chlorophyll					
		EAF/Oxygen					
Cross-cutting Technologies							
	sor Interface – UCK + SWE	Bio-fouling prevention					
Target Platforms							
Gliders	Drifters/prof ilers	Cable Observatories	Ferries				
Trawlers	Nets & Lines	Other leisure	Stand alone				

Smart Sensor Interfaces

- Smart Sensor Interface and Web Components Hardware and software interface with miniaturized low power modular design
- Implementation of OGC PUCK protocol for instrument discovery and identification
- Precision Time Protocol (IEEE Std. 1588) for time synchronization
- Open Source software development tools
- Open Data access based on Sensor Web Enablement framework.

Biofouling protection by electrochlorination on optical windows

Electrochlorination by

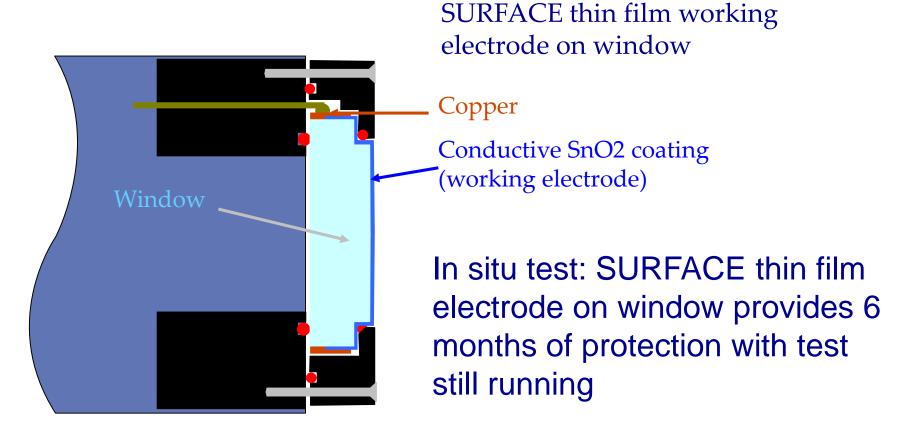


Image and information courtesy of Laurent Delauney, IFREMER GEO European Project Workshop – 15 June 2015

NeXOS Test and Demo Scenarios

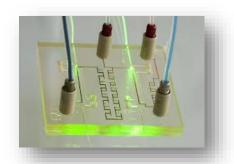
,		1111				
Platform types	01	02	03	A1	A2	EAF
Gliders	Х	Х		Х		
Drifters/ profilers				Х		
Cable observatory	Х	Х	X		Х	
Stand alone	X	Х	Х	Х		
Ferries, fixed routes	Х	Х	Х			
Other/leisure	X	х	Х			
Trawlers					Х	Х
Long lines/nets					Х	Х

Scenario 1: Hydrocarbon observations with gliders; detection and quantification of leakage

Scenario 2: Carbon cycle and carbon sequestration monitoring with ferry-boxes including pH, inorganic carbon, carbonate ions, partial pressure CO2.

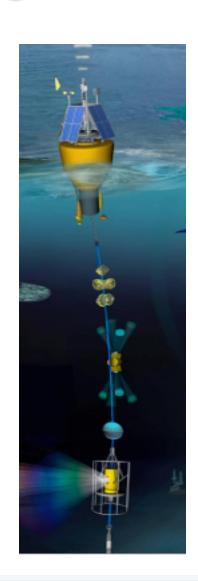
Scenario 3: Passive acoustic monitoring and characterization of underwater sounds from floats and gliders

Scenario 4: Observations for sustainable fisheries observing ocean variables


Scenario 5: Detection and characterization of phytoplankton blooms and groups

Collaboration Among Projects

- Modularity of the developed sensor systems
- Standard web interfaces for multiple platforms
- Extend the deployment duration of sensors



Project	Common Sense	NeXOS	SCHeMA	Sense Ocean
Temp, Pressure	X		X	
Oxygen			X	X
CDOM		X		X
Nutrients/carbonates	X		X	Χ
Phytoplankton		X		Χ
Hydrocarbons		X		X
Carbon Cycle		X		X
Fisheries		X		
Underwater noise	X	X		
microplastics	Χ			
Heavy/trace metals	X		X	

Interoperability – Supporting GEO

- Sensor-Platform Interface OGC PUCK protocol for instrument discovery and identification
- Sensor to Repository Standardized web services (SWE) for accessing sensor information and sensor observations
- Addressing also
 - o metadata standards
 - best practices in four areas: calibration; robustness and reliability; usability; and platform interface.

